Tuesday, 25 December 2012
Sunday, 23 December 2012
Surprising Number Patterns IV
Now the logical thing to inspect would be the pattern of these strange
products.
1 x 8 = 8
11 x 88 = 968
111 x 888 = 98568
1111 x 8888 = 9874568
11111 x 88888 = 987634568
111111 x 888888 = 98765234568
1111111 x 8888888 = 9876541234568
11111111 x 88888888 = 987654301234568
111111111 x 888888888 = 98765431901234568
1111111111 x 8888888888 = 987654321791234568
Here are some more charmers of mathematics that depend on the surprising
nature of its number system. Again, not many words are needed
to demonstrate the charm, for it is obvious at first sight. These depend
on the property described in Unit 1.4 and the unusual property of the
number 9.
999 999 x 1 = 0 999 999
999 999 x 2 = 1 999 998
999 999 x 3 = 2 999 997
999 999 x 4 = 3 999 996
999 999 x 5 = 4 999 995
999 999 x 6 = 5 999 994
999 999 x 7 = 6 999 993
999 999 x 8 = 7 999 992
999 999 x 9 = 8 999 991
999 999 x 10 = 9 999 990
Again, the number 9, which owes some of its unique properties to the fact
that it is 1 less than the base 10, presents some nice peculiarities.
9 x 9 = 81
99 x 99 = 9 801
999 x 999 = 998 001
9 999 x 9 999 = 99 980 001
99 999 x 99 999 = 9 999 800 001
999 999 x 999 999 = 999 998 000 001
9 999 999 x 9 999 999 = 99 999 980 000 001
products.
1 x 8 = 8
11 x 88 = 968
111 x 888 = 98568
1111 x 8888 = 9874568
11111 x 88888 = 987634568
111111 x 888888 = 98765234568
1111111 x 8888888 = 9876541234568
11111111 x 88888888 = 987654301234568
111111111 x 888888888 = 98765431901234568
1111111111 x 8888888888 = 987654321791234568
Here are some more charmers of mathematics that depend on the surprising
nature of its number system. Again, not many words are needed
to demonstrate the charm, for it is obvious at first sight. These depend
on the property described in Unit 1.4 and the unusual property of the
number 9.
999 999 x 1 = 0 999 999
999 999 x 2 = 1 999 998
999 999 x 3 = 2 999 997
999 999 x 4 = 3 999 996
999 999 x 5 = 4 999 995
999 999 x 6 = 5 999 994
999 999 x 7 = 6 999 993
999 999 x 8 = 7 999 992
999 999 x 9 = 8 999 991
999 999 x 10 = 9 999 990
Again, the number 9, which owes some of its unique properties to the fact
that it is 1 less than the base 10, presents some nice peculiarities.
9 x 9 = 81
99 x 99 = 9 801
999 x 999 = 998 001
9 999 x 9 999 = 99 980 001
99 999 x 99 999 = 9 999 800 001
999 999 x 999 999 = 999 998 000 001
9 999 999 x 9 999 999 = 99 999 980 000 001
Friday, 21 December 2012
Surprising Number Patterns III
Here are some more charmers of mathematics that depend on the surprising
nature of its number system. Again, not many words are needed to
demonstrate the charm, for it is obvious at first sight. Just look, enjoy,
and spread these amazing properties to your students. Let them appreciate
the patterns and, if possible, try to look for an “explanation” for this. You
might ask them why multiplying by 9 might give such unusual results.
Once they see that 9 is one less than the base 10, they might get other
ideas to develop multiplication patterns. A clue might be to have them
consider multiplying by 11 (one greater than the base) to search for a
pattern.
0 x 9 + 1 = 1
1 x 9 + 2 = 11
12 x 9 + 3 = 111
123 x 9 + 4 = 1 111
1 234 x 9 + 5 = 11 111
12 345 x 9 + 6 = 111 111
123 456 x 9 + 7 = 1 111 111
1 234 567 x 9 + 8 = 11 111 111
12 345 678 x 9 + 9 = 111 111 111
A similar process yields another interesting pattern. Might this give your
students more impetus to search further?
0 x 9 + 8 = 8
9 x 9 + 7 = 88
98 x 9 + 6 = 888
987 x 9 + 5 = 8 888
9 876 x 9 + 4 = 88 888
98 765 x 9 + 3 = 888 888
987 654 x 9 + 2 = 8 888 888
9 876 543 x 9 + 1 = 88 888 888
98 765 432 x 9 + 0 = 888 888 888
nature of its number system. Again, not many words are needed to
demonstrate the charm, for it is obvious at first sight. Just look, enjoy,
and spread these amazing properties to your students. Let them appreciate
the patterns and, if possible, try to look for an “explanation” for this. You
might ask them why multiplying by 9 might give such unusual results.
Once they see that 9 is one less than the base 10, they might get other
ideas to develop multiplication patterns. A clue might be to have them
consider multiplying by 11 (one greater than the base) to search for a
pattern.
0 x 9 + 1 = 1
1 x 9 + 2 = 11
12 x 9 + 3 = 111
123 x 9 + 4 = 1 111
1 234 x 9 + 5 = 11 111
12 345 x 9 + 6 = 111 111
123 456 x 9 + 7 = 1 111 111
1 234 567 x 9 + 8 = 11 111 111
12 345 678 x 9 + 9 = 111 111 111
A similar process yields another interesting pattern. Might this give your
students more impetus to search further?
0 x 9 + 8 = 8
9 x 9 + 7 = 88
98 x 9 + 6 = 888
987 x 9 + 5 = 8 888
9 876 x 9 + 4 = 88 888
98 765 x 9 + 3 = 888 888
987 654 x 9 + 2 = 8 888 888
9 876 543 x 9 + 1 = 88 888 888
98 765 432 x 9 + 0 = 888 888 888
Wednesday, 19 December 2012
Monday, 17 December 2012
Sunday, 16 December 2012
Saturday, 15 December 2012
Surprising Number Patterns II
Here are some more charmers of mathematics that depend on the surprising nature of its number system. Again, not many words are needed to demonstrate the charm, for it is obvious at first sight. Just look, enjoy, and share these amazing properties with your students. Let them appreciate the patterns and, if possible, try to look for an “explanation” for this.
12345679 x 9 = 111 111 111
12345679 x18 = 222 222 222
12345679 x 27 = 333 333 333
12345679 x 36 = 444 444 444
12345679 x 45 = 555 555 555
12345679 x 54 = 666 666 666
12345679 x 63 = 777 777 777
12345679 x 72 = 888 888 888
12345679 x 81 = 999 999 999
In the following pattern chart, notice that the first and last digits of the products are the digits of the multiples of 9.
987654321 x 9 = 08 888 888 889
987654321 x 18 = 17 777 777 778
987654321 x 27 = 26 666 666 667
987654321 x 36 = 35 555 555 556
987654321 x 45 = 44 444 444 445
987654321 x 54 = 53 333 333 334
987654321 x 63 = 62 222 222 223
987654321 x 72 = 71 111 111 112
987654321 x 81 = 80 000 000 001
12345679 x 9 = 111 111 111
12345679 x18 = 222 222 222
12345679 x 27 = 333 333 333
12345679 x 36 = 444 444 444
12345679 x 45 = 555 555 555
12345679 x 54 = 666 666 666
12345679 x 63 = 777 777 777
12345679 x 72 = 888 888 888
12345679 x 81 = 999 999 999
In the following pattern chart, notice that the first and last digits of the products are the digits of the multiples of 9.
987654321 x 9 = 08 888 888 889
987654321 x 18 = 17 777 777 778
987654321 x 27 = 26 666 666 667
987654321 x 36 = 35 555 555 556
987654321 x 45 = 44 444 444 445
987654321 x 54 = 53 333 333 334
987654321 x 63 = 62 222 222 223
987654321 x 72 = 71 111 111 112
987654321 x 81 = 80 000 000 001
Thursday, 13 December 2012
Surprising Number Patterns I
There are times when the charm of mathematics lies in the surprising nature of its number system. There are not many words needed to demonstrate this charm. It is obvious from the patterns attained. Look, enjoy, and
spread these amazing properties to your students. Let them appreciate the patterns and, if possible, try to look for an “explanation” for this. Most important is that the students can get an appreciation for the beauty in these number patterns.
1 x 1 = 1
11 x 11 = 121
111 x 111 = 12 321
1 111 x 1 111 = 1 234 321
11 111 x 11 111 = 123 454 321
111 111 x 111 111 = 12 345 654 321
1 111 111 x 1 111 111 = 1 234 567 654 321
11 111 111 x 11 111 111 = 123 456 787 654 321
111 111 111 x 111 111 111 = 12 345 678 987 654 321
The Beauty in Numbers 3
1 x 8 + 1 = 9
12 x 8 + 2 = 98
123 x 8 + 3 = 987
1 234 x 8 + 4 = 9 876
12 345 x 8 + 5 = 98 765
123 456 x 8 + 6 = 987 654
1 234 567 x 8 + 7 = 9 876 543
12 345 678 x 8 + 8 = 98 765 432
123 456 789 x 8 + 9 = 987 654 321
spread these amazing properties to your students. Let them appreciate the patterns and, if possible, try to look for an “explanation” for this. Most important is that the students can get an appreciation for the beauty in these number patterns.
1 x 1 = 1
11 x 11 = 121
111 x 111 = 12 321
1 111 x 1 111 = 1 234 321
11 111 x 11 111 = 123 454 321
111 111 x 111 111 = 12 345 654 321
1 111 111 x 1 111 111 = 1 234 567 654 321
11 111 111 x 11 111 111 = 123 456 787 654 321
111 111 111 x 111 111 111 = 12 345 678 987 654 321
The Beauty in Numbers 3
1 x 8 + 1 = 9
12 x 8 + 2 = 98
123 x 8 + 3 = 987
1 234 x 8 + 4 = 9 876
12 345 x 8 + 5 = 98 765
123 456 x 8 + 6 = 987 654
1 234 567 x 8 + 7 = 9 876 543
12 345 678 x 8 + 8 = 98 765 432
123 456 789 x 8 + 9 = 987 654 321
Wednesday, 12 December 2012
Tuesday, 11 December 2012
Monday, 10 December 2012
Penolakan (Subtraction): whole numbers
Latihan Penolokan (Subtraction): whole numbers
untuk Tahun 2&3
Saturday, 8 December 2012
Thursday, 6 December 2012
Tuesday, 4 December 2012
Monday, 3 December 2012
Sunday, 2 December 2012
Saturday, 1 December 2012
Matematik Tahun 5 Perisian Kursus PPSMI
Link ke Matematik Tahun 5 Perisian Kursus PPSMI, anda sekarang boleh belajar kendiri mata pelajaran Matematik Tahun 5 dalam bentuk multimedia daripada internet selain belajar di sekolah dalam bentuk CD.
![]() |
Matematik Tahun 5 Perisian Kursus PPSMI |
Thursday, 29 November 2012
Wednesday, 28 November 2012
Tuesday, 27 November 2012
Monday, 26 November 2012
Sunday, 25 November 2012
Friday, 23 November 2012
Thursday, 22 November 2012
Latihan Matematik Tahun 6 Set 1 Kertas 1
Dalam masa cuti ini , adik-adik bolehlah cuba jawab latihan Matematik ini untuk Tahun 6.
Set 1 Kertas 1
Set 1 Kertas 1
Wednesday, 21 November 2012
Tuesday, 20 November 2012
Monday, 19 November 2012
Sunday, 18 November 2012
Saturday, 17 November 2012
My Book Of Number Games 1-150
Permainan nombor dalam bentuk pdf, sila download dan buka melalui adobe reader. Contoh isi kandungan:
![]() |
Link untuk download pdf fail | 10.2MB |
Friday, 16 November 2012
Math Resource Studio 5
Lembaran kerja matematik cepat dan mudah dengan edisi terbaru kegemaran guru.
Release Notes Version: 5.0.11.0
Menyediakan set lembaran buku kerja secara profesional atau dalam ujian dengan cepat dan mudah serta menjimatkan masa. Pelbagai latihan untuk matematik dari mudah ke susah menyenangkan guru matematik membuat soalan latihan.
Lebih daripada dua puluh set latihan baru telah ditambah kepada program ini.
Lebih banyak pilihan dan ciri-ciri telah ditambah kepada set senaman pelbagai membolehkan penyesuaian yang lebih tepat.Berikut yang terkandung dalam program ini:
Release Notes Version: 5.0.11.0
Menyediakan set lembaran buku kerja secara profesional atau dalam ujian dengan cepat dan mudah serta menjimatkan masa. Pelbagai latihan untuk matematik dari mudah ke susah menyenangkan guru matematik membuat soalan latihan.
Lebih daripada dua puluh set latihan baru telah ditambah kepada program ini.
Lebih banyak pilihan dan ciri-ciri telah ditambah kepada set senaman pelbagai membolehkan penyesuaian yang lebih tepat.Berikut yang terkandung dalam program ini:
|
|
|
Thursday, 15 November 2012
Wednesday, 14 November 2012
Monday, 12 November 2012
Dokumen Standard, Huraian Sukatan, RPT
Link ini untuk Rancangan Pelajaran Tahunan dan Dokumen Standard dari Tahun 1 hingga 6 untuk Sekolah Kebangsaan bagi semua subjek.
Huraian Sukatan, RPT, Dokumen Stardard
Atau lihat laman web KPM KSSR untuk dapatkan keterangan lebih lanjut.
Huraian Sukatan, RPT, Dokumen Stardard
Atau lihat laman web KPM KSSR untuk dapatkan keterangan lebih lanjut.
Sunday, 11 November 2012
Friday, 9 November 2012
Makro Pengajaran dan Pembelajaran
Tarikh/Hari : 24/10/2012 (Rabu)
Masa : 8.00am-8.30am (30minit)
Kelas : 3H
Mata pelajaran : Matematik
Bil. Pelajar : 30 orang
Tajuk : Operasi Tambah dalam Lingkungan 10 000.
Standard Kandungan : 1.1 Tambah dalam Lingkungan 10 000.
Standard Pembelajaran: Di akhir sesi pembelajaran ini, murid dapat:
1.1.1 Menambah sebarang dua nombor tanpa mengumpul semula
dengan hasil tambah tidak lebih daripada 10 000.
1.1.2 Menambah sebarang tiga nombor tanpa mengumpul semula
dengan hasil tambah tidak lebih daripada 10 000.
Thursday, 8 November 2012
Rancangan Pelajaran Harian Matematik Tahun 3
Tarikh/Hari : 24/10/2012 (Rabu) Masa: 8.00am-8.30am (30minit)
Kelas : 3H
Mata
pelajaran : Matematik Bil. Pelajar: 30 orang
Tajuk : Operasi Tambah dalam
Lingkungan 10 000.
Standard Kandungan :
1.1 Tambah dalam Lingkungan 10 000.
Standard Pembelajaran:
Di akhir sesi pembelajaran ini, murid dapat:
1.1.1 Menambah sebarang dua nombor tanpa mengumpul semula dengan
hasil tambah tidak lebih daripada 10 000.
1.1.2 Menambah sebarang tiga nombor tanpa mengumpul
semula dengan hasil tambah tidak lebih daripada 10 000.
Pengetahuan Sedia ada: Murid-murid sudah mengenal operasi tambah dalam
lingkungan 1000
Bahan Bantu Belajar :
Sampul surat, manila kad, kad nombor, dadu, gula-gula, marker pen, papan hitam,
kapur, lembaran kerja.
Penerapan Nilai : Bekerja sama dalam kumpulan, kerajinan,
ketelitian.
Kemahiran: : i. Kognitif: Membuat pengiraan operasi tambah
dua nombor dan tiga nombor.
ii.
Psikomotor: Mencatat hasil perbincangan, menyebut secara spontan.
iii. Sosial: Berbincang
dan bekerja sama dalam kumpulan.
EMK :
Keusahawanan
Wednesday, 31 October 2012
Tugasan 3: Pembangunan Blog P&P
Tugasan 3: Pembangunan Blog P&P (30%)
Tarikh penilaian akhir pada
14 Disember 2012
Blog anda perlu aktif dan dihantar pada Tapak Tugasan
MyGuru3 pada 15 November 2012
Secara individu, pelajar
dikehendaki membina blog Pengajaran & Pembelajaran bagi satu topik
pengajaran yang dipilih berdasarkan sukatan pelajaran dari Kementerian
Pelajaran Malaysia. Syarat berikut perlu dipatuhi:
1.
Pelajar boleh menggunakan platform Blogspot (Blogger) atau Wordpress.
2.
Pilihan
matapelajaran hendaklah berdasarkan mata pelajaran
utama yang ditugaskan di sekolah.
3.
Pastikan nama,
foto pemilik blog, nombor matrik dan tajuk blog diletakkan di muka hadapan
blog. Blog yang dibangunkan hendaklah aktif dan sentiasa
dikemaskini sebelum tarikh akhir penilaian tugasan blog.
4.
Blog perlu mengandungi perkara-perkara berikut:
· Bahan pembelajaran seperti
nota, soalan latihan, aktiviti di dalam kelas dan sebagainya.
· Gambar
· Audio
· Video
5.
Libatkan
pelajar, ibubapa dan rakan guru yang lain untuk memberi komen pada kandungan
yang dipaparkan.
6.
Sediakan pautan
kepada laman sosial dan repositori bahan pengajaran seperti Facebook, Scribd,
bahan Powerpoint, Prezi dan mana-mana format yang sesuai.
Subscribe to:
Posts (Atom)